基于相似样本归并的大样本混合信用评估模型

  • 129
  • 约 683.49KB
  • 约 14页
  • 2022-12-09 发布
  • 3金币
  • 预览图可能不清晰,实际为下载为清晰文档
当前面向大样本设计的信用评估模型,大多没有深入探究大样本的分布特征,只是简单地将传统评估方法应用在大样本上.首先提出了用于描述大样本分布特征的相关属性集、边界向量等若干概念及定义,并证明了其主要性质.之后在两个大样本数据集的基础上,研究了样本在相似性方面的分布特征,最后设计了一种大样本混合信用评估模型——HLSCE模型.HLSCE模型认为在大样本数据集中,样本的同一属性在不同局部区域内,对分类性能的贡献是不同的.具体地,HLSCE模型根据各样本与边界向量的相似性差异,结合生物启发式算法,将样本归并划分为若干子集并分别在其上训练基分类器.实证研究表明,HLSCE模型的分类精度相比于现有的代表性信用评估模型更高,同时也具有更为优越的平衡性与稳定性....

基于相似样本归并的大样本混合信用评估模型.pdf

  1. 1、本文档共14页,其中可免费阅读14页,需付费后方可阅读剩余内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。

相关文档

相关热门